Themabewertung:
  • 0 Bewertung(en) - 0 im Durchschnitt
  • 1
  • 2
  • 3
  • 4
  • 5
Frage zu paritys
#23
(03.07.2011, 16:44)Kubine schrieb:
(03.07.2011, 14:41)Stefan schrieb: Es geht allerdings auch mit einer UNGERADEN Anzahl von Permutationen.

Definiv Nein!

Definitiv sehr wohl! Hast du meine Antwort auf Moritz' Nachhaken nicht gelesen oder nicht verstanden?

Du sagst es ja sogar selbst:
"Ein einziger Dreierzyklus ist somit schon eine gerade Permutation"

(03.07.2011, 16:44)Kubine schrieb: Der Austausch von 2 Elementen einer Menge ist Eine Permutation.
Ein einziger Dreierzyklus ist somit schon eine gerade Permutation da sie sich aus Zwei einzelnen Permutationen zusammensetzt.

Sieht so aus, als ob du immer noch Permutation und Transposition nicht auseinander halten kannst. Hatte ich dich auf Seite 1 extra schon drauf hingewiesen...
Zitieren


Nachrichten in diesem Thema
Frage zu paritys - von cuboy - 01.07.2011, 22:56
RE: Frage zu paritys - von Nudel - 01.07.2011, 23:04
RE: Frage zu paritys - von Stefan - 01.07.2011, 23:43
RE: Frage zu paritys - von cuboy - 01.07.2011, 23:32
RE: Frage zu paritys - von moritz - 02.07.2011, 00:23
RE: Frage zu paritys - von Stefan - 02.07.2011, 01:43
RE: Frage zu paritys - von moritz - 02.07.2011, 11:07
RE: Frage zu paritys - von Stefan - 02.07.2011, 12:07
RE: Frage zu paritys - von Kubine - 02.07.2011, 12:25
RE: Frage zu paritys - von Stefan - 02.07.2011, 12:52
RE: Frage zu paritys - von Kubine - 02.07.2011, 13:13
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:41
RE: Frage zu paritys - von moritz - 03.07.2011, 14:52
RE: Frage zu paritys - von Stefan - 03.07.2011, 15:05
RE: Frage zu paritys - von moritz - 04.07.2011, 00:58
RE: Frage zu paritys - von Stefan - 04.07.2011, 02:35
RE: Frage zu paritys - von Kubine - 03.07.2011, 16:44
RE: Frage zu paritys - von Stefan - 03.07.2011, 17:32
RE: Frage zu paritys - von moritz - 02.07.2011, 13:36
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:49
RE: Frage zu paritys - von cuboy - 03.07.2011, 01:54
RE: Frage zu paritys - von Kubine - 03.07.2011, 11:40
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:58
RE: Frage zu paritys - von moritz - 03.07.2011, 14:38
RE: Frage zu paritys - von Kubine - 03.07.2011, 17:20
RE: Frage zu paritys - von Kubine - 03.07.2011, 17:51
RE: Frage zu paritys - von Stefan - 03.07.2011, 18:55

Gehe zu: