Themabewertung:
  • 0 Bewertung(en) - 0 im Durchschnitt
  • 1
  • 2
  • 3
  • 4
  • 5
Frage zu paritys
#17
(02.07.2011, 13:36)moritz schrieb: ok ich definiere über die zuganzahl:
nehmen wir den allseits bekannten algo r2 U2 r2 Uw2 r2 u2
hinter jedem buchstaben steht eine 2. somit ist es völlig egal ob ich r oder Rw als qtm=1 (bzw qtm=2) definiere da jeder zug 2mal gemacht wird und die parität insgesamt bleibt gerade.

Und was ist mit anderen Zugfolgen?

Insbesondere bekommst du ein Problem, wenn du sowohl Rw als auch r als qtm=1 definierst, da dank Rw r' = R jede Stellung sowohl gerade als auch ungerade waere! Ziemlich sinnfrei, oder? Du musst dich also schon entscheiden.

(02.07.2011, 13:36)moritz schrieb: natürlich kann man auch einen pseudo-3x3 sehen. aber... warum sollte man?

Aeh... vielleicht weil die Parities aus exakt diesem Kontext stammen? Und weil das nun mal tatsaechlich die Sichtweise ist, die wir da verwenden? Und selbst wenn es nicht die naheliegende Sichtweise waere, waere sie trotzdem existent und du kannst nicht allgemein "ist gar kein Parity" behaupten.

(02.07.2011, 13:36)moritz schrieb: nur weil die weitverbreitete reduction-methode darauf aufbaut? da kann man ja gleich sticker zählen gehen

Kannst ja mal jemand suchen, der einzelne Sticker permutiert (niemand), und ihn fragen, welche Rolle "OLL-Parity" und "PLL-Parity" fuer ihn spielen (keine).
Zitieren


Nachrichten in diesem Thema
Frage zu paritys - von cuboy - 01.07.2011, 22:56
RE: Frage zu paritys - von Nudel - 01.07.2011, 23:04
RE: Frage zu paritys - von Stefan - 01.07.2011, 23:43
RE: Frage zu paritys - von cuboy - 01.07.2011, 23:32
RE: Frage zu paritys - von moritz - 02.07.2011, 00:23
RE: Frage zu paritys - von Stefan - 02.07.2011, 01:43
RE: Frage zu paritys - von moritz - 02.07.2011, 11:07
RE: Frage zu paritys - von Stefan - 02.07.2011, 12:07
RE: Frage zu paritys - von Kubine - 02.07.2011, 12:25
RE: Frage zu paritys - von Stefan - 02.07.2011, 12:52
RE: Frage zu paritys - von Kubine - 02.07.2011, 13:13
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:41
RE: Frage zu paritys - von moritz - 03.07.2011, 14:52
RE: Frage zu paritys - von Stefan - 03.07.2011, 15:05
RE: Frage zu paritys - von moritz - 04.07.2011, 00:58
RE: Frage zu paritys - von Stefan - 04.07.2011, 02:35
RE: Frage zu paritys - von Kubine - 03.07.2011, 16:44
RE: Frage zu paritys - von Stefan - 03.07.2011, 17:32
RE: Frage zu paritys - von moritz - 02.07.2011, 13:36
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:49
RE: Frage zu paritys - von cuboy - 03.07.2011, 01:54
RE: Frage zu paritys - von Kubine - 03.07.2011, 11:40
RE: Frage zu paritys - von Stefan - 03.07.2011, 14:58
RE: Frage zu paritys - von moritz - 03.07.2011, 14:38
RE: Frage zu paritys - von Kubine - 03.07.2011, 17:20
RE: Frage zu paritys - von Kubine - 03.07.2011, 17:51
RE: Frage zu paritys - von Stefan - 03.07.2011, 18:55

Gehe zu: