Speedcube.de Forum
Verrückt... - Druckversion

+- Speedcube.de Forum (https://forum.speedcube.de)
+-- Forum: Speedcubing (https://forum.speedcube.de/forumdisplay.php?fid=7)
+--- Forum: Cubing Allgemein (https://forum.speedcube.de/forumdisplay.php?fid=9)
+--- Thema: Verrückt... (/showthread.php?tid=4754)

Seiten: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21


RE: Verrückt... - Sébastien - 04.11.2009

(04.11.2009, 18:32)JDspeedcuber schrieb: ich versteh nur bahnhof
aber egal
also beim 2x2x2 hab ich heute so ca. 5 oder 6 pll skips

PLL oder PBL? Hintereinander? Wenn nicht, wieviele Solves haste ca. gemacht?


RE: Verrückt... - JDspeedcuber - 04.11.2009

PLL
was ist PBL ?
äh kp ich schätze so 50-60


RE: Verrückt... - Sébastien - 04.11.2009

PBL bezeichnet die permutation beider Layer wie dus bei ortega machst. PLL ists ja nur wenn du zuerst eine Ebende baust. Waren die Skips hintereinander?


RE: Verrückt... - sol1x - 04.11.2009

@Sebastien:
Das würd ich nicht so sagen, sonst hätte ja Leo das in seine Berechnung auch miteinfließen lassen- und das hat er ja wohl nicht:

"Wahrscheinlichkeit = 1/216*1/18 = 1/3888 = 0,0257...%"
-> er hat auch die absolute Wahrscheinlichkeit berechnet ;-)
gut - mal davon abgesehen, dass er die 2 Quadrate vergessen hat.

Insgesamt liegst du wohl richtig - ebenso wie ich. Das ganze ist Interpretationssache der Frage. (anbei hat Hubi das genauso interpretiert wie ich Wink )
Wie du bereits gesagt hast:
Ich hab die absolute Wahrscheinlichkeit ausgerechnet - und du die Wahrscheinlichkeit an dem Tag Wink


RE: Verrückt... - leandrobaltazar - 04.11.2009

ja ich hab die quadrate einfach vergessen. wollte aber auch einfach nur statistisch sehen, wie wahrscheinlich das ist.

die wahrscheinlichkeit im lotto zu gewinnen liegt übrigens bei ca. 1:14 Mio und die wahrscheinlichkeit zwei OLL-skips mit gleichem G-perm zu erhalten bei 1:15 Mio Wink. hätte auch eher vom blitz getroffen werden müssen.


RE: Verrückt... - JoJo - 04.11.2009

Also ich hab so alle 2 tage ein Skipp alle 3 tage 2 skips^^ aber meistens nur pll oder oll keine LL


RE: Verrückt... - Hubi - 04.11.2009

also hier hab ichs:
http://de.wikipedia.org/wiki/Bayestheorem
das scheint die Lösung zu sein, wenn man nur wissen will, wie die Chancen für 2 mal dasselbe PLL stehen, egal, welches.
Das bedeutet umformuliert: für jedes PLL die Wahrscheinlichkeit ausrechnen, dass es 2 mal hintereinander vorkommt und alles zusammenzählen.
Es gibt 3 "Klassen": die 16 PLLs, die 1/18 haben, die 2 PLLs, die 1/36 haben, und die 3 PLLs sowie den Skip, die 1/72 haben.

Das macht (auch in der Matrix) bei 16 PLLs 1/18^2, bei 2 PLLs 1/36^2 und bei 4 PLLs (mit skip) 1/72
zusammengezählt:
16*1/18^2 + 2*1/36^2 + 4*1/72^2 = 0.516... = 5.2% Big Grin

dürfte auch stimmen, weil ja die meisten PLLs 1/18 haben und ein paar weniger; es ist ein bisschen kleiner als 1/18.
kommt also hin.

(die ganzen Wahrscheinlichkeiten addieren sich auch zu eins, also 16*1/18 + 2*1/36 + 4*1/72)

für 2x OLL skip + 2x dasselbe PLL allgemein also rund 1/216^2*0.516

(04.11.2009, 19:53)leandrobaltazar schrieb: die wahrscheinlichkeit im lotto zu gewinnen liegt übrigens bei ca. 1:14 Mio und die wahrscheinlichkeit zwei OLL-skips mit gleichem G-perm zu erhalten bei 1:15 Mio Wink. hätte auch eher vom blitz getroffen werden müssen.
ja aber spielst du 100 mal pro Tag Lotto? nein.


RE: Verrückt... - Sébastien - 04.11.2009

also genau das was sol1x ausgerechnet hat Wink


RE: Verrückt... - sol1x - 04.11.2009

Nur dass ich von dem Bayestheorem noch nie was gehört habe - sehr interessant allerdings :-D das hätte mir einiges an Denkarbeit gespart :-D

ich hatte vorher zwei PLL - Skips hintereinander ... da hab ich erst gemerkt, dass das gar nicht so unwahrscheinlich ist^^...


RE: Verrückt... - Hubi - 05.11.2009

(04.11.2009, 21:27)sol1x schrieb: Nur dass ich von dem Bayestheorem noch nie was gehört habe - sehr interessant allerdings :-D das hätte mir einiges an Denkarbeit gespart :-D

ich hatte vorher zwei PLL - Skips hintereinander ... da hab ich erst gemerkt, dass das gar nicht so unwahrscheinlich ist^^...
genauso wahrscheinlich wie 2 mal hintereinander denselben N Perm zu haben Tongue
das eine ist gut, das andere schlecht TongueTongueTongue